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J—He‘considerip local measurement error theory for logistic regression

ABSTRACT

which is applied to four different methods: ordinary logistic regression
without accounting for measurement error, a functional maximum likelihood

estimate, an estimate based on linearizing the logistic function and an

estimator conditioned on certain appropriate sufficient statistics. Our- '~
: l’.’ w5ed—
asymptotic theory includes a bias-variance trade off, which -we-use to

construct new estimators with better asymptotic and small sample properties.
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1. INTRODUCTION

Logistic regression is the most used form of binary regression see
Berkson (1951), Cox (1970), Efron (1975), and Pregibon (1981). We observe
independent observations (Y1 ,xl) seees (YN,xN) .++, Where (xi) are fixed

p-vector predictors and the (Yi) are Bernoulli variates satisfying
1.1 Pr{Y,=1|x,} = F(x;8)={1 + exp(-x;B)} " .

Under regularity conditions, the maximum likelihood estimate for B satisfies

Ni(éL-B) = N(O,S‘l) , where

N
(1.2) 1im N1 § x.xTF(x18) (1-F(x.8)) = S.
Mo isl

The motivation for our paper is the Framingham Heart Study (Gordon and
Kannel (1968)), a prospective study of the development of cardiovascular
disease. This ongoing investigation has had an important impact on the
epidemiology of heart disease. Much of the analysis is based on the logis-
tic regression model with (Yi) being various indicators of heart disease and
(xi) being vectors of baseline risk factors such as systolic blood pressure,
serum cholesterol, smoking, etc. It is well-known that many of these base-
line predictors are measured with substantial error. For example, in one
group of 45-54 year old Framingham males, we estimated that 25% of the
observed variability in systolic blood pressure is really "measurement" error
due to reader-machine variability, time of day, day of week, etc. The
second author was asked by some Framingham investigators to assess the impact
of such substantial measurement error and to suggest alternatives to usual
logistic regression which account for this error. The present study is an
outgrowth of these questions.

There are three major effects of measurement error on ordinary logistic

regression. First is bias, which becomes larger with larger measurement
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error, see Michalik and Tripathi (1980). Second is attenuation, i.c., a
tendency to underestimate the disease probability for high risk cases and
overestimate for low risk cases; the nature of the attenuation is made more
explicit in Section 2. Thirdly, there is the problem of hypothesis testing;
we show the not generallygrell-known fact that the usual tests for individual
regression components canliave level higher than the nominal level. An
example where this occurs is an unbalanced two-group analysis of covariance,
where one is interested in testing for treatment effect but the covariable
is measured with error. We believe we are the first to provide an explicit
demonstration of this testing phenomenon. Finally, the availability of
techniques which correct for measurement error can make clear the need for
better measurement, e.g., more blood pressure readings over a period of days.

Our measurement error model begins with (1.1), but rather than observing

the p-vector x; we observe

(1.3) X; =X, * tiei/v’u-l ,

1

where ti is the square root of a symmetric positive semi-definite matrix t,

(ei) are i.i.d. random vectors with identity covariance and zero first

moments., Here m is known to the experimenter and will be discussed shortly.
In most cases, some components of (xi) will be measured without error.

If we view these as the first r components of (xi), then we have

(1.4) b= 3) -

where {, is positive definite. This convention is used throughout in an
effort to reduce notation. Also, in most cases the measurement error covari-
ance § will be unknown, so where necessary we will assume the existence of

estimators satisfying
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3 ;
: (1.5) N (§-P) - 0,(1) .
? We study the following four estimators.
é - Estimator #1 éLU is ordinary logistic regression naively calculated using
3 the observable (Xi), satisfying
Y N
- eyl
(1.6) 0 -izlxicvi F(X;8,)) -

Estimator #2 Assuming that the errors in (1.3) are normally distributed and
t is known, one can maximize the joint likelihood for (Yi,xi) and then replace

t by t. This is a type of functional maximum likelihood éF' resulting in the

equations
N, oT
1.7 0= ilei{\'i-F(xiBF)} ,
. “lag g Ny .
(1.8) ko= X+ m tsF{Yi-P(xiBF)} . i=l,...,n .

Estimator #3 This is éc, due to Clark (1982) and based on Bayes-type esti-
mates of (xi) given (xi) or the near linearity of F(+) on [-3,3] (Cox (1970,
PP 89-90) combined with ideas of Fuller (1980). Define (tx,ﬁ) as the sample

~ covariance and mean of the (xi). :X will be partitioned similarly to (1.4),
and t;l will be the obvious generalized inverse. Clark's Qc is usuai logistic

regression based on

‘1 '1 "~
(1.9) X;o = X;m tx $x;-9).

Estimator #4 We believe we are the first to introduce what we call the

sufficiency estimator és‘ Given (t,B), a sufficient statistic for Xy assuming

normal errors in (1.3) is
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(1.10) T,(8,§) = X; + m f8(Y;-1) .
Again assuming normal errors, the conditional probability that (Yicl) given

{, 8 and T, (8,1) is

(1.11) PriY,=1|T;} = F(8'T, (8,4)) .
. This suggests solving for Bs
N T
=1
# It is not difficult to show that estimators #1, 2 and 3 are weakly

3 consistent under conditions (2.2)-(2.4) provided min(m,N) + « ., There is a
minor problem with the sufficiency estimator in that equation (1.12) may hawe

multiple solutions not all of which lead to a consistent sequence. To guaran-

tee uniqueness and consistency as min(m,N) + « we will take Bs to be thg
solution to (1.12) which is closest to éLU .

Model (1.14) is'appropriate for two situations as min(m,N) + «; (i) m
independent replicates of (xi) exist, in which case the (ei) become effectively
normally distributed and (ii) a local model in which measurement error is
small but nonnegligible. In the latter case the moments of order greater than

two of (ei) generally differ from that of a normal variate.

The asymptotic theory is dictated by a bias-variance trade-off. Fixing

m in (1.3) and letting N + =, the estimators are generally inconsistent, and ® ’

the resulting bias terms are complicated functionals of the error law and

give little insight into the construction of good estimators. Fixing N and
letting m + =« in (1.3), all estimators reduce to the same quantity. Thus to Lo
obtain useful insight into the behavior of the estimators, it seems reason-

able to let (m,N) + « simultaneously.
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In this paper we will first compute the asymptotic distributions of the
estimators as m + «, N/m2 -> Az <o , In this set-up, all the estimators have
the same asymptotic covariance matrix but have different asymptotic biases.
These asymptotic biases provide a way to compare the various estimators, as
well as to verify the attenuation and hypothesis testing diffulties mentioned
earlier,

As a second step, we will use the asymptotic biases found in the first
step to suggest simple improvements of the estimators with smaller bias. We

then sketch an interesting theory for larger mcasurement errors, N/m4 -+ xz.

A small Monte-Carlo study confirms that in large samples our asymptotics can

be useful in better understanding the measurement error problem.

2. ASYMPTOTIC DISTRIBUTIONS FOR THE USUAL METHODS

In this section, we first state the main asymptotic results for the four

. estimators assuming N/m2 - Az. At the end of the section we discuss the

statistical implications of the results through examples. Proofs are given
in Section 6. For the results in this section we require only that (t-t) =

op(l).

Theorem 1: (Ordinary Logistic Regression BLU) Define

N
(2.1) sy = N T FD e

i=1

where F(k)(-) is the kth derivative of F. Make the following four assump-

tions:
¥ 2 2
(2.2) N T kIS =0y 0 max [lx [IT =e) e
i=1 1<i<N

(2.3) There exists a positive definite matrix M such that SN(Y) 2 M for v \

in a neighborhood of 8 and N sufficiently large and SN(B) + S;

PO |
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(2.4) E(e) =0 E(ee’) =1 E|e]|**®< = for some 6 > 0 ;

(2.5) Nm2+22 0gi<ew

Then the ordinary logistic regression estimate satisfies

-1

(2.6) M g b NeasTle, o ,s7)) where

Bry LU’

N
g -1 1),.T
€., = 1im N {F*"/(x.8)I8
LU N izl i t

+ aT4er(? (1 B)x, /2}

Theorem 2: (Functional MLE §F). Under the assumptions of Theorem 1,

N
A L -1 -1 . -
2.7 Ni(BF-B) = NCASTep, 87, where cpreyy - lim N lizlpm (x;8)§8.

Theorem 3: (Sufficiency Estimator ﬁs). Under the assumptions of Theorem 1,
(2.8) Ni(Bs-B) £, neo,s7Y .

Theorem 4: (Clark's estimator éc). In addition to the assumptions of Theorem

1, assume §, R bt { where tx is the covariance matrix of the predictors (x).

Then
(2.9) Ni(ﬁc-B),=L‘> N(-As‘lch,s'l) where
-1? - T
c.1=C,., - lim N . A(x.-x)F(x.B)
cL™"Lu Norco is1 i i

+x; (x; -0 ATeF (D (x1B)

= tim N Yk A= -1
X = Niz \ § x, A= (DL

Again (tx+t)'l is defined by the convention in Section 1.

DISCUSSION 8
Two comments are in order. First, Theorem 1 provides an asymptotic theory -

s g 4

for logistic regression when there is no measurement error by simply taking
$ = 0. Second, in the first-pass asymntotic theory developed here, the esti- ®

mators differ only in their limiting bias. From this perspective, the suffi-
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ciency estimator is necessarily best because it has no limiting bias. In the
next section we produce a new asymptotic theory which casts the sufficiency
estimator in a different light. Before undertaking this task we comment on

the two examples alluded to previously.

Example #1 Consider simple logistic regression through the origin with 8 > 0.
We expect to see attenuation, i.e., negative bias terms in (2.6), (2.7) and
(2.9). We will call the opposite, overestimation of B, overcompensation. It
is easy to show that -AS'lcF is always positive, so the functional mle ovér-
compensates, a most surprising finding. On the other hand, for most designs
-xs'chU is negative, indicating underestimation or attenuation of g for usual
logistic regression. Somewhat surprisingly and completely at variance with

the linear regression case, -AS’lc can be positive i.e. usual logistic

LU
regression can overcompensate. One design in which this occurs arises when

most cases have very high or very low risk.

Example #2 Consider a two-group analysis of covariance, x: = (1,(-1)i,di),
BT = (80,81.82). We measure the covariable di with error variance 02. Often,
interest lies in testing hypotheses about the treatment effect By A standard
method to test 81=0 is to compute its logistic regression estimate compargd
to the usual asymptotic standard error. Theorem 1, through (2.6) suggests
that this test will actually approach its nominal level only if the second
component of S-ICLU is zero. Denoting the second row of S-1 by S,» We see
that the correct level is achieved only if
1N T 2, T, 2.2

(2.10) 0 =1lim N ):szxip (x;B)0"8; .

N+ i=1
The last will not hold in the common epidemiologic situation in which the

true covariables are not balanced across the two treatments. Thus, when

substantial measurement error occurs in a nonrandomized study, we can expect

T

P T




bias in the levels of the usual tests. Similar results hold for multiple
logistic regression. 'Of course, in a randomized study (2.10) will be true,

so that the ordinary tests would be appropriate.

3. CORRECTED ESTIMATORS

In the previous section we computed asymptotic distributions when
N/m2 > 12. Both usual logistic and functional regression had asymptotic bias
terms. Since we have explicit and fairly simple expressions for these bias

terms, it seems reasonable to suppose that new estimators can be constructed

.which have no asymptotic bias under the set-up of Section 2. We will define

such estimators and consider their distributions under the weaker condition

N/m4 »> xz.

There are many modifications of ordinary and functional regression which

have no asymptotic bias as N/m2 -+ Az. For ordinary logistic regression, we

have found it simplest to merely subtract an estimate of the bias, obtaining
-lA -~

(3.1) Bium = {1+ Sy (Bp)dyb/mdd,

where SN(~) is given by (2.1) with the observed Xi replacing x4 and

N
= N1 1) ,,T (2) T2 AT
Jy =N izl{l F (xiBLU) + (DF (xisLU)xisLu} .

For functional maximum likelihood, we instead modify the estimators of (xi),
feplacing (1.8) by

(3.2) %,(8) = X, + (1/m){Y,-F(X8)}

x {§8 + (D' IBA-2FOGRNX;}

The result will be denoted by QFM‘ We first show that these estimators do

correct for bias. The results in this section require the full force of (1.5).

A a4
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Theorem 5: Suppose N/m2 -+ Az {0 < A < =) and the assumptions of Theorem 1

hold. Then the modified estimators éLUM’ EFM and the sufficiency estimator
ﬁs all have the same limit distribution of Theorem 3.

Actually, Theorem 5 is a corollary of this more general result.

Theorem 6: Suppose N/m4 - Az (0 £ X < =) and that the conditions of Theorem 1

4

hold. In addition, assume

(3.3) (ei) have zero third moments and

|4+6 <

EllEiI o for some § > 0.

Then the modified logistic, modified functional and sufficiency estimators

}

when placed in the form N#(8-B) are asymptotically normally distributed with

covariance S™! and bias terms of the form -AS lc. For the sufficiency esti-
mator,
(3.4) ¢, = (1/24)8"f8

x lim N-l.'i a3 (xzs)t*(q-sntis ,
= { 8T Q-3 $1aF (¥ (X1 B)x, ]’
where Q satisfies
etles™er’) - tatlece™e .

The other bias terms are extremely complex.

DISCUSSION

The important points about Theorem 6 are two. First, we can expect the
modified estimators to improve on their unmodified versions; this is confirmed
to some extent in the simulation. Second, the asymptotics here show the
effect of nonnormality on the sufficiency estimator. If the errors (ei) are
normally distributed, then Q = 3I and the bias term cg = 0. Thus in large

scale studies with normally distributed measurement error, we can expect the
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sufficiency cstimator to perform quitc well. FEquation (3.4) suggest that the
sufficiency estimator will have less optimum behavior for decidedly non-normal

measurement errors.

4. MONTE-CARLO ‘

We performed a limited Monte-Carlo study, designed to help answer three
questions. Are the corrected estimates of any value? 1Is Clark's estimator
worth further study? Is the asymptotic theory any guide to thé performance
of the sufficiency estimator? .

The model for the study was
(4.1) Pr{Yi=1|xi} =a+Bx; , i=l,...,N.

We considered these sampling situations where xi denotes a chi-squared random

variable with one degree of freedom:

(-1.4,1.4), (x,) ~ Normal (0,0> = .10) , N = 300, 600;

(I)(x,8)

(-1.4,1.8). (x;) ~ 0 X3-1)//Z , o2 = .10, N = 300, 600;

(II) (“)8)

For both cases, the measurement error variance 02 was one third the
variance oi of the true predictors (02 = 05/3). For each case, we considered
two sampling distributions for the measurement errors (ei): (a) Normal
(0,02) and (b) a contaminated normal distribution, which is Normal (0,02)
with probability 0.90 and Normal (0,2502) with probability 0.10.

We believe these two sampling situations are realistic, but of course
in such a small study they are not representative. To those used to linear
regression, the sample sizes N = 300, 600 may appear large, but our major
interest is in larger epidemiologic studies where such sample sizes are common.
For example, Clark (1982) was motivated by a study with N = 2580, Hauck (1983)
quotes a partially completed study with N > 340, and we have analyzed
Framingham data for males aged 45-54 with N = 589. We would hesitate to

correct for measurement error in most small sample situations.
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The values of the predictor variance oi and the measurement error vari-
ance 02 are similar to those found in the Framingham cohort mentioned in the
previous paragraph when the predictor was loge{(systolic blood pressure-75)/3},

s a standard transformation. The ratio ozloi = 1/3 is fairly common; Clark
also finds this ratio in her study of triglyceride. The choice of

(a,B) comes from Framingham data as'well. All experiments were repeated 100

s times.
{ In the experiment, we took m = 2 by observing independent replicates
E (xil’xiz) of each X £,/2 is in this case a scalar, estimated by the sample

variance of (Xi1~xiz)/2, while tx** t,/2 is also a scalar, estimated by the
sample variance of (X11+Xiz)/2. We studied the following simple computational

forms of the various estimators.

1. Ordinary logistic regression solving (1.6);

2. Clark's linearized estimator which does ordinary logistic regression
based on (1.9);

3. A one-step version of the functional maximum likelihood estimator.
On the right side of (1.8), replace X, by X, and 8 by BLU’ obtaining
a new Xx.. Then solve (1.7);

4. Corrected ordinary regression (3.1);

5. A one-step version of the corrected functional estimator. On the
right side of (3.2), replace B by eLU‘ Then solve (1.7);

6. A version of the sufficiency estimator obtained by solving (1.12)
but with Ti(B,t) replaced by Ti(BLU,t).
It can be shown that the one-step estimators defined in (3), (5), and (6)
differ from the full estimators only in the form of the asymptotic bias e.g.
the one-step version of és’ outlined in 6. is also asymptotically normal
- provided N/m4 + ); however the bias term generally differs from (3.4).

Sweeping conclusions cannot be made from such a small study. Basically,

we can make the following qualitative suggestions. First, the ordinary logis-

tic estimator is less variable but more biased than the others; situations such

L
{
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as N = 600 in the study ar Clark's N = 2580 are such that bias dominates and

are hence candidates for using corrected estimators, with an opposite conclu-

sion for small sample sizes where variance dominates. !";,:
. A second suggestion from the tables is that when the ordinary logistic ;izij
estimator loses efficiency (Case I(b), II(b) and when N = 600), the corrected Euf::
* estimators perform quite well. To some extent, these numbers justify con- ;_‘-f
structing the asymptotic theory of the paper, without which the corrected ;f‘;;
estimators would not have been found. f:
Clark's estimator performs very well in this study when the true predic- ;—f-j
tors are normally distributed (Case I), but it does have a drop in ;;;ii
efficiency when the predictors are highly skewed as in the chi-squared Case II. ;é%;?
To some extent this is expected because the estimator is based on an assump- ::iif
tion of normally distributed predictors. It is surprising that the one-step {j?f
functional estimator computed here as well as the sufficiency estimator per- ii&f
" ' form so well when the measurement errors are not normally distributed (Cases ir;;j
S
I (b), II (b)), as both were defined through an assumption of normal errors.
Note too that, as predicted from the theory, the corrected functional attenu-
ates the functional estimator. . ]
—
5. CONCLUDING REMARKS |
Our asymptotic theory, which is interesting in itsglf, has proved useful
in two ways. First, heuristically, it provides a better understanding of b«_._
attenuation and it suggest a problem worth further study, namely in what
situations can wec expect usual inference ignoring measurement error to be of
the wrong level, i.e., at what point does increased bias overwhelm decreased Y
variance?
Besides introducing the sufficiency estimatof, we have also used the
asymptotic theory to construct two new estimators with reasonable large sample L
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properties; all three of these along with Clark's estimator performed well in
our small Monte-Carlo study.

The pressing practical problem now appears to be to delineate those
situations in which ordinary logistic regression should be corrected for its
bias. Studies of inference and more detailed comparison of alternative esti-
mators will be enhanced by the identification of problems where measurement
error severely affects the usual estimation and inference.

Finally, our method of asymptotics is similar to that in the interesting
work of Wolter and Fuller (1982) and Ameniya (1982) for nonlinear regression
models. The latter derives results for nonlinear regression similar in spirit
to our Theorems 1 and 2 and even suggests corrected estimates which satisfy
our Theorem 5. Because of these similarities, it is useful to emphasize that
the problem and model we have studied fundamentally differ from nonlinear'
regression. The estimators we study and the results we have obtained are of

course not covered in the work of Wolter and Fuller (1982) and Ameniya (1982).

6. PROOFS OF PRIMARY RESULTS

Because the number of unknown parameters increases with increasing sample
size the classical results on consistency and asymptotic normality of maximum
likelihood estimates are not. immediately applicable. As noted earlier condi-
tions (2.2)-(2.4) and min(m,N) + « are sufficient to insure consistency of all
the estimators in section 2 subject to the caveats regarding multiple solutions
to (1.12) (details are available from the authors). We will prove Theorems 1
and 2 and sketch the major steps in the proof of Theorem 6 for the sufficiency
estimator. Proofs of the other results, being nearly identical, are omitted.

We start with a series of lemmas. In each case we assume (2.2)-(2.5)

and consistency of § . Note that %, is defined by (1.7), (1.8).
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-—ered

LA

»
PN
St :




-14-

N
Lemma 1: With Dy = N1 JY. (%,-X.) we have Nin = APBNT 129(1)(x B + 0p(1)
— 1

Proof::

5 - fan Iy iZY (¥, -F(R1B)) .

Write N XYi(Yi-F(iTﬁp)) ApA,
i

where A

N
-1 T
L =N ;Yi(Yi-F(xiB))

N
A, = N'ngi(F(x}‘B)-F(izﬁF)) .

The difference between A, and its expectation is op(l), that is

1
(6.1) Ay = N IZF(I)(x B) + o (1)
Also
AT, LT
6.2) [A,] <N ;lxis-xiBFI

N
<N lgfu x;-% 0L el + llxg I 11 8-l 3

N
_N'lgill Xg-x; I W 8ll o« I $8H 1 8l /m « flxg ] | 8-Bgll 3

N
<NIXC gyl sl /at o 880 I ol m s i I -t

and clearly this last term is op(l). Finally (6.1), (6.2), (2.5) and consist-

ency of § and éF complete the proof.

N
Lemma 2: With Ry = N'IZ(F(X}B)Xi-F(iiB)ii) we have NiRN = op(l).
1

Proof: A Taylor series expansion of F(ﬂzﬁ) about the point x}B yields

N - _ N n - N
" (6.3) N}RN . N‘ig (xi-xi)pcx}s)m 3; (xi-xiJTsxiF-(x}s)m 1§ri‘




where

A
eyl < Tell czollx, I el 1% %, I
2 -2
< Ilsll 2o llx 1 el 8l 2a2 .

N
In light of (2.5) and consistency of § and BF N"izu ri" - op(l). The first
1

ﬁ . term on the r.h.s. of (6.3) equals

N
(6.4) -tepm‘lu'i E(Yi-F(iEBF))F(Xzs) .

With an argument similar to the one used in Lemma 1 we may replace iIBF by
xIB in each of the summands in (6.4) altering (6.4) only by a term which is

op(l). The resulting quantity is
~ "1 -}N T T
(6.5) PBpm™ N0 O P (X B)

The normed sum in (6.5) has zero mean and asymptotically negligible variance
thus the first term in (6.3) is op(l). In a similar fashion one can show the

remaining term in (6.3) is op(l) finishing the proof.

N
Lemma 3: Define T = N'IE(Y,-FCXTB))X. then NiT converges in law to
—_— LU,N 11 i i

LU,N

a multivariate normal random variable with mean -Ac,,, and covariance matrix S.

LU

Proof: NiT = N‘3§(Y -F(XTB))(X -x.)
—_ LU,N ;i i iT7i

. N-1§(Y -F(X18))x
1 i i i
By expanding F(X:B) in a Taylor series around xIB in each of the above sums

we find, after recombining terms

: '3N F(x18))X
(6.6) N Ty n= N g(Yi- (x;B))X;

N
-N'i§(xi-xi)(xi-xi)TeF(I)(izs)

N
-N'i}(xi-xi)TBF(l)(x?B)xi
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-y T .2.(2) 3T
-N E((xi-xi) B) “F -7 (X B)x, /2

where ii and iiare on the line segment joining Xi and X The third term in
(6.6) is op(l) by virtue of its zero mean and vanishing variance, since m + o,

The first term may be written as

6.7 N'i§ Y. -F(x,8))x, + N-1§ Y, -F(x,8)) (X
( . ) 1( i' (xi ))xl 1( i' (xi ))( i'xi)n

and the second term in (6.7) also has zero mean and asymptotically negligible
variance. Assumptions (2.2), (2.3) and an appeal to the Lindeberg Central
Limit Theorem are used to show the first term in (6.7) is asymptotically
normally distributed with zero mean and covariance matrix S.

Write the fourth term in (6.6) as Bl+32 where

- T, 2.(2),.T
B, = -N }((xi-xi) B)F 7 (x;8) x,/2
N . :
8y = N e K - # D ez

Assumption (2.2) and the 2+§ moments of ||ei||imply B,-E(B,) = op(l), As

for B, the inequality IF(ZJ(x)-F(z)(y)I < min(1,3|x-y|) can be used to conclude

2 .- 1Y 2 . -1
8,0l < cll 82 /28 x| lle; 12 minc,3)l sl m7 ) €11
1
and hence (2.2) implies
BCll B0l ) < (eonst.) Eclle, | 2minc1, 30l sl m7H] ¢ 119

S, e

]
The Dominated Convergence Theorem together with the Markov Inequality are "'”f
used to show this last quantity converges to zero as m + = and thus f
Bl+82 = H(Bl) + op(l) i;.;‘

N
- -2 N'lgsTtsF(z)(xzs)xi + 0 (1),

Similarly the second term in (6.6) can be shown equal to

PR , P .
e ! S e e e
.y A el e o
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N
-AN-lztBF(l)(xEB) + o (1).
1

Combining the preceding facts and noting the definition of Ly establishes

the desired result.

Proof of Theorems 1 § 2: In each summand appearing in (1.6) and (1.7) apply

the mean value Theorem to F(+) to arrive at

(6.8) SpuBry - 8 = Ty N
(6.9) Sp(B; - 8) = TLU,N + Dy + Ry
where

3 N1 vp(D)

Sy = ZF (x BLU 1)x

o -1 (1) A1H a oT
Sp =N EF (xiBF’i)xiﬁi .

For each i gLU,i and BF,i lie on the line segments joining BLU aﬁd BF to 8
respectively. In light of the previous results we need only show §LU and §F
converge to S in probability. We prove this for §LU only, a similar demon-
stration works for S_ as well.

F
Since Xi-xi = (t/m)iei and by assumption m + », it is not difficult to

show
~ 1 T
- N EF( ) (T8 1By, %% = op (1)
Thus omitting terms of order o (1)
(6.10) S\ (8) - 8 = S8 - N zp(l)(x 1By, 1% xz )

The norm of the right hand side of (6.10) is bounded by
1y a -1 a¥ 2
(6.11) N2 BBl Csup N2 1 x JIONTT R x, I
1<i<N 1

Lermma 3 and (2.3) imply Nl(BLU—B) = Op(l) and hence (2.2) implies that (6.11)
is op(l). By assumption SN(B) + S which in turn implies §LU LS S completing

the proof.

LA aeis Braarth SO SO AN ML SR SR AN
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We now outline the proof of Theorem 6 for the sufficiency estimator.

Proof of Theorem 6 (Sufficiency Estimator): After a preliminary expansion we

arrive at
. N -
SN*(B,-8) = N°IT, (B, [Y;-F(B T, (8,4))] + o (1)
1
(6.12)
=I+II+III+IV+V+0P[1)
where
-iN T
(6.13) I=N X[Yi-F(xiB)]xi
1

N
11 =—8Ttam'lu‘32(vi-i)p(1)(x:a)xi
- 1

N

11 = -(BTfB)zm'zN'igF(Z)(XEB)Xi/B

=i ‘ln'i§ Y, - [Y,-F(X
= {fm 1( i' )[ i- ( iB)]

N
V= -BTtstBn'zN'}gF(l)(X}B)/4

In arriving at (6.13) we have used the fact that Ni(t-z) = Op(l). By using an

argument similar to one employed in Lemma 3 we may write

-}N T

(6.14) I= N Z(Yi-F(xis))xi

1

N 3 L

-N'*% 1 0gx;) (x;-x) 83 F ) (1) /51
J8

v To 3w () (Tay /it
.Z (x;x) )R (x;8) /31 + 0p (1)

-lt{
-N “)x,
11 1

J

h

Because of the bound on the 4+6*" moment of lle, [| replacing the last two

terms in (6.14) by their expectations alters I only by a term which is op(l).




:
I
:

Thus, writing F(k) for F(k)(xgs)
: | (6.15) 1= st
| ' i

N
-N'ln'lg{F(l)tB «n? thottece e /a1

: N
| - -N-im-leTtBZ{xiF(z)/z + m-IBTtiQtisxiF(4)/4!}
: 1
: " opth
! Q is the matrix appearing in (3.4) and ZN has a limiting N(0,I) distribution.
| o
imilarly,
; N ‘ '
| I = BTteN'im'lf{xiF(z)/2-m-1t8 F(z)(p-;)-m‘lBTtexiF(S)(p-})/z}+op(1)
A 1
= N
h 11 = -(8"8) N in 2 Ix;F(D/8 + 0, (1)
: 1
i N
‘; v = 8 N i T r W o 8Ty r B (p-1y 72} + 0, (1)
; 1
! N
| v = -gTfetenin 2 TPMyg 0p(1)
‘ 1

Combining these terms and using the identities -

l _ F(s) -3F(2)(F-l) - F(l)/z

F(4) = ~4F(3)(F-i) - F(z)

we find

snlcés-s) sizN - A + op(l)

proving the theorem.

REMARKS

The modified estimators weaken the necessary condition for asymptotic

4

normality from Mm 2 = 0(1) to Nm ~ = O(1) at the expense of stronger condi-

tions on the error law. As might be expected it is possible to play this




- o

[T
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game indefinitely. With appropriate assumptions on the first 2k moments of

the error law one can construct a modified version of the naive estimator

2k

éLU which is asymptotically normal provided Nm “" = 0(1) for any positive inte-

ger k. Details on this extension of the theory are available from the authors.

'@ -
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TABLES

i These are the results of the Monte-Carlo study. '"Efficiency"
E refers to mean square error efficiency with respect to ordinary
logistic regression.
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A NOTE FOR THE EDITOR AND REFEREES

| e s el
‘]

Proof of Consistency: Of the four estimators introduced in section 1 we

will prove consistency of éLU and éF employing assumptions (2.2)-(2.4) and o

the condition min(N,m) - «», The proof for Bc is similar whilc our convention

- regarding multiple solutions to (1.12) will insure consistency of the suffi- ®
ciency estimator. | '
To present the proofs we need some additional notation. Write x}‘ =
(uT,vT) where vy corresponds to the components of X3 measured with error. ;—-4
Analogously we write x = (u ,v ) for R given in (1.8) and X ( V ) «
where Vi = viven and E(em m) =m lt*. Let H(*) = logF(+) and note that H(-) j".
has Lipschitz norm one and |H(t)| < 1+ |t| for all t e R, Finally let o]

N
A1) gy '] FCGBHGGY) + FO-x]BH(-X[Y))

i=1
- (A.2)  Gy(v = X {y, H(xiv) + (1-YH(-%; T3 a,.q
» (A.3) L v, ) = -1 bz’ {Y, H( T ) + (1-Y,)H ) :
* N(Y’ V 1 = is1 i xiY i (‘xiY :
7 "

N
-N'l(m/2).El(Vi-vi)Tt:l(Vi-vi) :
i=

L U AN

In defining (A.1) and (A.3) and elsewhere in the proof we use the sequence
{vi}}l‘ both to represent the true but unknown predictors (A.1) and as mathe- !__*_
matical variables in the argument of the function "‘N (A.3). The context should -
make clear which interpretation is appropriate. LN is the normed functional
lc;g-likelihood assuming normal errors and replacing {, by the consistent ._______

estimate §,, thus by definition
A N N
(A.4) LB, (V1) 2 Ly(y,{v;})

for all ye RP and {vi}r; "RN(p-r) . But (A.4) implies that

PR W ol PV S Y P SO S N 4 2 o P WU A U Y oy " - dom,




' P
GN(BF) 2 Gy(y) for all Y€ R*.

Thus QF maximizes the random concave function GN(-). Note that since GN(-)
is defined in terms of ii it depends explicitly on ﬁF also. However this does

not affect the validity of the inequality

(A.5) Gy(B) > z:%pGN(Y) .

The naive estimator BLU also maximizes a certain random concave function.

Specifically we have

(A.6) | Ly By (V1) 2 sup LN(v.{vi}’l‘) )

yeRp

The function gN(-) is concave for each N and (2.2) along with the inequal-
ity |H(t)|<1+|t]| implies that for each fixed v, {gN(Y)} is a bounded sequence of
real numbers. Although our assumptions do not imply that {gN(-)} converges it
is true that every subsequence contains a further subsequence converging uni-
formly on closed bounded subsets of RP to some finite concave function
(Rockafellar Thm. 10.9). Assumption (2.3) insures that the limit of every
convergent subsequence possesses a unique maximum at 8. Suppose for the moment
that Gy(y)- g (v) = Op(l) for each fixed y. Pick any subsequence {éF,N }

_ _ k
from {BF N} and let {gN,(-)} be the corresponding subsequence from
’ k .

{gN(-)}. Now from {gN (*)} we can always choose a further subsequence
k

{gN ()} which converges to some concave function g(+) with a unique maximum
k,j
at B. Of course this implies GN y) - g(v) = op(l) and since éF N maxim-

k,Jj k’j
izes GN (*) an appeal to Theorem II.1 of Anderson and Gill (1982) implies
kj
B - 8 =0_(1). This shows that every subsequence of {8. ,} contains a
Ny s P F,N
?

further subsequence which converges in probability to B which in turn implies
ép N B = op(l). Thus to prove consistency of QF we need only show GN(y)—gN(y) =

op(l) for fixed y. Similarly consistency of éLU is established by showing

fomtom man'abir g e

o

» ..



.:A
LN(y,{vi}¥) - gN(y) = op(l). To complete the task we start with '.i j
Proposition 1: Assume (2.2) and suppose min(N,m) + = then LN(Y.{Vi}g) - gy(M)= ;;;h
o,(1) for each fixed y .
9 Proof: The quantity under investigation may be written as T, + T, where
. ) o~1 N T T T
T, =N igl{vi H(X;Y) - F(x;8) H(x;M)} , o
s ¥ T T T L
E T, = N7° § {(1-Y)H(-X;y) - F(-x;B)H(-x;Y)} . o
i=1 1 2
Furthermore '7733
1§ T T ST L
Ty = N T (Y THOGY) - HOxgv) 1Y « N0 § QY -Fx;8) JH(x;Y) ) R
i=1 i=1 R
’
=Ty *+ Ty o
The Lipschitz condition on H implies 8 ifi
. N i
-1 T .
‘T1li <N 2 '(Xi-xi) YI : . -
i=1 L
I IS S gyl S
< Y N €. . '
i=1 m - 4
. . .
The last expression is op(l) provided min(m,N) + » , T12 has zero mean and RN
variance
28 ),.T,.2,.T 2 X 2 -
N4 T P g mrt gy <N T casl x b TviD :
i=1 i=l e .
which vanishes in the limit in view of (2.2). Thus T1 = op(l) and by an
identical argument Tz a op(l) concluding the proof.
In addition to proving consistency of GLU Proposition 1 yields thc follow- l;_;_
ing two useful corollaries. RN
.




- - = =
AR S TLRC AR L P N T T T T —— L e ., E i e “at=nr et s R R R

LA SRR ER CARCAR L AC RS Rt AP R g
AN
3

Corollary 1la:

pr{lLN(s,{vi}’;)I <1} +1

/ oL
Proof: From (A.1) and the definition of H(-) SRR
ley(®)| <2 sup [t log t| <1 e
O<t<1 B
N »
and by Proposition 1 gN(B) - LN(B{Vi}l) = op(l).
Corollary 1b:
-1 N . 02 —eed
Pr{N "(m/2) 2 I vi-vi” < t*" b+1 ‘ .
i=1 wo
s s s N N : L
Proof: By definition Ly (Bg,{v,})) 2 Ly(8,{V,},) or equivalently
S
a.n w1 '§ {Y.HRTB) + (1-Y.)H(-RTB.)} > ...~
’ joy L UAF i iF = o
N -1 ? 9T . 5 .
Ly(8: (V1) + N7 @/2) 04V L (Vv i
Since the 1l.h.s. of (A.7) is almost surely nonpositive and :JE;;
Pr{LN(B,{Vi}T) < =1} + 0 it must be that f;?ii
<
N ] 1
(A.8) PrN  m/2) § v, -v v v 213 61 . i
jop + 1 i'i 1
The conclusion follows from the consistency of §, and an application of the ' g;
inequality | t||? < [Iall t7 a7 ¢, true for all positive definite matrices A. !__N%

We are now in a position to complete the proof of consistency for ﬁF.

Proposition 2: In addition to (2.2) suppose min(m,N) + = and §,-}, = op(l),

then GN(y) - gN(y) = op(l) for each fixed vy . ey
Proof: In light of Proposition 1 it suffices to show GN(y)- LN(Y,{Vi}g) = R
op(l). Write this last quantity as W +W, where .

L __

...................
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N
-1 T T
W) =N izl{Yi(H(xiY) - HOX )Y

N
W, = N T 1Y) XD - HER )

2 i=1

The Lipschitz condition on H(+) and Schwarz's inequality imply that for jsl,2

aX . T
(A.9) |wj| <N ilecxi-xi) v|
-1 N -
< Mol T xg&l
-1 N -
= ||YI|N izln Vi“i"

N
vl o Y nv-e 2 .
i=1

The r.h.s. of (A.9) is op(l) by virtue of Corollary 1b and this completes the

proof.
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